蜘蛛兰组织培养快繁技术研究

田英翠 杨柳青 曹受金 (中南林业科技大学 长沙 410004)

[摘要] 在组织培养中,以蜘蛛兰品种为试材,以鳞茎为外植体,研究不同激素浓度对其直接诱导再生植株的影响。结果表明: MS+2 mg/L 6-BA+2 mg/L NAA 是直接诱导鳞茎再生植株的最好组合,而 LS+1 mg/L 6-BA+2 mg/L NAA 是直接诱导鳞茎再生植株的理想培养基。

[**关键词**] 蜘蛛兰 组织培养 6-BA NAA

蜘蛛兰(Hymenoca llissalisb) 属石蒜科水鬼蕉属的球根花卉。形如蜘蛛,花型别致奇特,花姿素丽,不仅可作盆栽来装饰庭院,布置廊下、窗前、会场,也可在温暖地区作布置花境的材料或在草地、灌木前丛植,其观赏价值及经济价值都较高。但目前由于蜘蛛兰的生产周期较长,其分球繁殖系数低,一些珍贵品种繁殖比较困难,不利于蜘蛛兰的种植及应用。因此,我们在相关研究[1~6]的基础上进行组织培养研究,对推动其快速繁殖及生产具有重要意义。

1 材料与方法

1.1 材料

试材由长沙市鸿飞花卉公司提供的优良品种蓝花蜘蛛兰(H. calathina)。

1.2 研究方法

采集蜘蛛兰鳞茎,用 70%的酒精和 0.1%的氯化汞消毒获得无菌材料。以 MS 为基本培养基,用 6-BA 单因子,将 6-BA 浓度分别设为

1 mg/L, 2 mg/L, 3 mg/L, 4 mg/L,5 mg/L, 6 mg/L, 7 mg/L, 8 mg/L, 9 mg/L,10 mg/L,15 mg/L,20 mg/ L等 12 个不同处理;采用 6-BA 配 合 NAA 双因子,仍以 MS 为基本培 养基将 NAA 浓度固定为 2 mg/L, 6-BA 浓度分别为 1 mg/L、1.5 mg/ $L_2 mg/L_2.5 mg/L_3 mg/L 组合$ 5个不同处理;将 NAA 浓度固定为 1 mg/L,6-BA 浓度分别为 1 mg/L、 1.5 mg/L, 2 mg/L, 2.5 mg/L, 3 mg/L组合5个不同处理;以LS为 基本培养基,将 NAA 浓度固定为 2 mg/L, 6-BA 浓度分别为 1 mg/L、 1.5 mg/L, 2 mg/L, 2.5 mg/L, 3 mg/L组合5个不同处理;将NAA 浓度固定为 1 mg/L, 6-BA 浓度分 别为 1 mg/L、1.5 mg/L、2 mg/L、 2.5 mg/L、3 mg/L组合5个不同处 理;采用 NAA 配合 6-BA 双因子, 以LS为基本培养基,将 6-BA 浓度 固定为 1 mg/L, NAA 浓度分别为 1 $mg/L_1.5 mg/L_2 mg/L_2.5 mg/$ L、3 mg//L 组合 5 个不同处理;以 MS 为基本培养基,将 6-BA 浓度固 定为 2 mg/L, NAA 浓度分别为 1 mg/L, 1. 5 mg/L, 2 mg/L, 2. 5 mg/LL、3 mg/L 组合 5 个不同处理。以 上各试验,附加 3% 的蔗糖,5 g/L的琼脂粉,调节 pH 值至 5.0~6.0, 光照强度为 700~1 000 lx,每日光 照时间 12 h 左右,温度为 23±2 ℃ 的环境条件下进行培养定期检查并 统计结果。

2 结果与分析

2.1 6-BA 直接诱导再生植株

2.2.1 6-BA 单因子直接诱导再生植株 从表 1 可看出,用单因子 6-

BA 诱导效果很不理想,浓度在 1 mg/L~4 mg/L 之间时,诱导率在 10%左右,当浓度大于 5 mg/L 时, 10 d 培养基变黑,20 d 培养基黑色加深,不能继续诱导分化不定芽。 30 d 后自然枯萎。总之,用 6-BA 单因子直接诱导再生植株不可取。

表 1 6-BA(单因子)对鳞茎诱导 再生植株的影响

序	浓度	诱导 不定	诱导 率	叶数	叶长
号	(mg/L)	芽/个	/%	/个	/cm
1	1	2.0	10. 2	2. 3	2.5
2	2	2.5	12.7	2.6	2.0
3	3	1.9	8. 2	2.4	2.1
4	4	1.8	3.9	0.7	0.8
5~12	5~12	0	0		

2.2.2 6-BA 配合 NAA 双因子直 接诱导再生植株 从表 2 可以看 出,以 MS 为基本培养基,固定 NAA 浓度 2 mg/L 不变,随着 6-BA 浓度增加,诱导不定芽数、诱导率、 叶数、叶长也逐渐增加。其中, MS +2 mg/LNAA+2mg/L6-BA 组合 诱导不定芽数 5.9 个、诱导率 90.2%、 叶数 2.16 个、叶长 4.78cm, 效果最 好;固定 NAA 浓度 1 mg/L 不变, 增加 6-BA 浓度,诱导效果同样逐渐 增加, MS + 1 mg/L NAA + 2mg/L 6-BA组合诱导效果最好,诱导 率达 88.6%。在表 2 试验数据的基 础上,针对蜘蛛兰的特性,调节基本 培养基,以 LS 为基本培养基,由表 3 可见,固定 NAA 浓度 2 mg/L 不 变,增加 6-BA 浓度,其中,LS+2 mg/LNAA+2 mg/L 6-BA 组合诱

^{*}基金项目:湖南省林业厅科技项目。

表 2 6-BA 配合 NAA(双因子)对鳞茎诱导再生植株的影响

处理	基本	NAA	6-BA	不定	诱导率	叶数	叶长
序号	培养基	(mg/L)	(mg/L)	芽数/个	/%	/个	/cm
1			1.0	2. 7	57.6	1. 13	1. 97
2			1.5	3.6	62.6	1. 18	3.76
3		2.0	2.0	5. 9	90.2	2. 16	4.78
4			2.5	3. 9	70.7	1.87	3.50
5	MS		3.0	3. 4	69.2	1.84	3.20
6			1.0	2.1	54.3	1.08	1.78
7			1.5	3.0	67.5	1.15	2. 10
8		1.0	2.0	4.6	88.6	1.17	2.50
9			2.5	3. 5	74. 2	1. 21	3. 20
10			3.0	3. 7	73.6	1.54	3.10

表 3 6-BA 配合 NAA(双因子)对鳞茎诱导再生植株的影响

处理	基本	NAA	6-BA	不定	诱导率	叶数	叶长
序号	培养基	(mg/L)	(mg/L)	芽数/个	/%	/ 个	/cm
1		-	1.0	3. 5	64.5	1. 29	3.65
2			1.5	4.9	84.3	1.73	3.79
3		2	2.0	11.9	91.6	2.15	4.67
4			2.5	7.8	79.6	2.07	4. 52
5	LS		3.0	7.2	73.2	1.98	4.25
6			1.0	5.6	67.3	1.58	4. 12
7			1.5	7.5	88.4	2.17	3.95
8		1	2.0	14.6	93. 7	2.36	4.67
9			2.5	9.0	81.2	2.01	4.21
10			3.0	8.6	80.3	2.06	4. 32

表 4 NAA 配合 6-BA(双因子)对鳞茎诱导再生植株的影响

	基本	6-BA	NAA	诱导不定	诱导率	叶数	叶长
序号	培养基	(mg/L)	(mg/L)	芽数/个	/%	/个	/cm
1			1.0	3. 7	62.5	1. 25	3.68
2			1.5	5.6	78.6	1.78	3.89
3	LS	1.0	2.0	11.2	91.8	2.35	4.97
4			2. 5	8.1	85.4	2.17	4.32
5			3.0	7.6	84.6	1.94	4. 29

表 5 NAA 配合 6-BA(双因子)对鳞茎诱导再生植株的影响

处理	基本	6-BA	NAA	<u>不定</u>	诱导率	叶数	叶长
序号	培养基	(mg/L)	(mg/L)	芽数/个	/%	/个	/cm
1			1.0	2, 7	56. 9	4. 3	4.80
2			1.5	3.3	69.8	5.2	5.87
3	MS	2	2.0	5.9	93.6	6.8	7.81
4			2.5	3.9	77.5	5.3	5.90
5			3.0	3. 7	76.3	5. 2	5.89

91.6%、叶数 2.15 个、叶长 4.67 cm,效果最好;固定 NAA 浓渡 1 mg/L不变,随着 6-BA 浓度增加,

导不定芽数 11.9 个、诱导率 mg/L 6-BA 是直接诱导蜘蛛兰再生 植株的最佳组合。诱导率最高达 93.7%

2.2 NAA 直接诱导再生植株 可以得出, LS+1 mg/LNAA+2 **2.2.1** NAA 配合 6-BA 双因子直 接诱导再生植株 从表 4 可以看 出,以LS为基本培养基,固定6-BA 浓度 1 mg/L 不变,而当增加生长素 NAA 浓度时, LS+2 mg/L NAA+ 1 mg/L 6-BA 组合诱导不定芽数 11.2个、诱导率 91.8%、叶数 2.35 个、叶长 4.97 cm, 效果很好。

2.2.2 NAA 配合 6-BA 双因子对 鳞茎诱导再生植株 调整基本培养 基 LS 为 MS, 固定 6-BA 浓度 2 mg/ L不变,随着 NAA 浓度增加,诱导 不定芽数、诱导率、叶数、叶长也逐 新增加,其中,MS+2 mg/L NAA+2 mg/L 6-BA 组合诱导不定芽数 5.9 个、诱导率 93.6%、叶数 6.8 个、叶长 7.81 cm,效果最好(见表 5)。

3 小结

通过以上各试验可以得出,在组 织培养的过程中,以鳞茎为外植体,6-BA 和 NAA 不同浓度对蜘蛛兰直接 诱导再生植株的影响非常大,以 MS 为基本培养基时,6-BA 单因子直接 诱导再生植株,浓度不超过 5 mg/L。 6-BA 和 NAA 双因子以不同浓度配 合时, MS+2 mg/L 6-BA+2 mg/L NAA 是直接诱导鳞茎再生植株的最 好组合,而 LS+1 mg/L 6-BA+2 mg/L NAA 是直接诱导鳞茎再生植 株的理想培养基。

参考文献

- 1 王玉珍.植物组培快繁技术与 产业化研究[J]. 林业科技 $1997,22(6):12\sim13$
- 2 韦三立. 花卉组织培养[M]. 北 京:中国林业出版社,2000
- 3 谭文澄,戴策刚.观赏植物组织 培养技术[M]. 北京:中国林业 出版社,2001
- 4 杨增海.园艺植物组织培养 [M]. 北京: 中国农业出版社, 2003
- 颜昌敏. 植物组织培养手册 [M]. 上海:上海科学技术出版 社,2003
- 6 刘敏. 花卉组织培养与工厂化 生产[M]. 北京:地质出版社, 2002