文章编号: 1001 ~ 3717(2007)01 - 0031 - 04

菊苣的组织培养繁殖的研究*

尚宏芹1,2,于士梅2,戴洪义2

(1. 菏泽学院生命科学系,山东 菏泽 274015; 2. 青岛农业大学园艺学院)

摘要:以菊苣幼嫩叶片为外植体,在 MS 附加不同浓度配比的 6-BA 和 NAA 的培养基上,研究菊苣愈伤组织诱导、芽分化及生根培养的条件。结果表明:菊苣愈伤组织诱导和芽分化受 6-BA 和 NAA 浓度的影响。最适合愈伤组织形成的培养基为 MS + 6-BA(0.2mg/L)+NAA(1.0mg/L),最适合芽分化的培养基为 MS + 6-BA(1.0mg/L)+NAA(0.5mg/L),最适生根培养基为 MS + NAA(0.1mg/L)。

关键词: 菊苣; 叶片; 组织培养

中图分类号: Q813.1+2

文献标识码: A

Study on Propagation of Cichiorium intybus L. in vitro

SHANG Hong-qin^{1,2}, YU Shi-mei², DAI Hong-yi²

(1. Department of Biology, Heze College, Heze 274015, China; 2. College of Hoticulture, QAU)

Abstract: The infancy leaves of Cichiorium intybus L. were taken as explants and cultured on MS medium supplemented with different concentrations of 6 - BA and NAA. The induction and differentiation of callus, buds and shoots were examined. The result showed that the concentrations of 6 - BA and NAA influenced the formation and differentiation of callus. The most suitable medium was MS + 6 - BA(0.2 mg/L) + NAA(1.0 mg/L) to the formation of the callus, 6 - BA(1.0 mg/L) + NAA(0.5 mg/L) to the differentiation of the buds, and MS + NAA(0.1 mg/L) to the growth of the shoots.

Key words: Cichiorium intybus: leaf: tissue culture

菊苣(Cichiorium intybus L.)为菊科菊苣属植物,又叫苦苣、苦白菜、咖啡草,为多年生草本植物。它既可用作蔬菜,又可用作饲草。其叶略有苦味,风味独特,具改善消化器官活动机能、改善心脏功能、保肝降脂、降血糖等功能,在欧洲多有栽培,在我国属一种新兴的保健蔬菜^[1]。有关菊苣品种介绍、生物学特性等方面,国外有比较详细的报道^[2]。我国从80年代引种菊苣,最初利用其根,作为咖啡代用品^[3]。近年来,软化菊苣已经在北京和山东等地有少量栽培。普通叶用菊苣业已面市。我国对于菊苣的研究多为栽培方面^[4-6],仅王绍明、张霞等曾报道过菊苣花瓣的组织培养^[7]。"Palla Rossa Bella"菊苣为一个开放授粉群体品种,基因型表现为多样性,植株形状差异较大,难以直接在生产上应用。对该

品种进行提纯复壮尚须较长时间。对表现优良的实生单株进行组培快繁不失为一种良策。通过菊苣叶片组织培养,不仅从叶片诱导出愈伤组织,而且可以分化出大量小苗。本研究结果可为"Palla Rossa Bella"菊苣优良单株的快速繁殖与推广和菊苣的基因工程提供参考。

1 材料与方法

1.1 材料

意大利菊苣的幼嫩叶片,品种为"Palla Rossa Bella",于2000年引自英国。

1.2 方法

1.2.1 消毒方法

取田间旺盛生长的菊苣幼嫩叶片,去除叶柄,用

作者简介:尚宏芹(1977-),女,山东章丘人,硕士,研究方向:植物遗传育种。

通讯作者: 戴洪义,E - mail: hydai@lyac. edu. cn

^{*} 收稿日期: 2006 - 08 - 18

自来水冲洗干净后,在超净工作台上用70%酒精进行表面消毒7~8s,然后用0.1%升汞溶液处理8~10min,最后蒸馏水冲洗3~5次。

1.2.2 试验处理

1)愈伤组织的诱导。将材料切成3~5mm大小,接种在添加有不同浓度6-苄氨基嘌呤(6-BA)和萘乙酸(NAA)的培养基上,每瓶接种3块外植体,每种处理接种10瓶,进行愈伤组织的诱导。观察愈伤组织的形成和分化情况,统计愈伤组织的诱导率,筛选出菊苣愈伤组织形成的最佳培养基配方。

愈伤诱导率 = 具有愈伤组织的块数 ×100 % 接种块数

2) 芽的分化。将在 MS + 6 - BA(0.2mg/L) + NAA(1.0mg/L) 培养基上产生的愈伤组织切割成 3 × 5mm 的小块后转接到不同浓度 6 - BA 和 NAA 的 MS 培养基上,每种处理接种 10 瓶,每瓶接种 3 块外植体。20~30d 后观察统计外植体分化与不定芽诱导情况。

外植体分化率 = 发生分化的外植体数目 ×100 % 接种的外植体数目

平均再生芽数 = 总再生芽数 具再生芽块数

3) 生根培养。将约2cm 高的无根苗接种在 MS 附加不同浓度 NAA 的生根培养基上,每瓶接 4 株,每处理 6 瓶,20d 后调查生根情况。

生根率 = 生根的植株数 ×100 %

平均再生根数 = 总再生根数/ 具再生根块数移栽成活率 = 成活的植株数 ×100 %

1.3 培养条件

基本培养基为 MS 培养基,上述培养基中加 3%的 蔗糖和 0.7% 的琼脂粉,pH = 5.8,培养室内相对湿度为 $70\% \sim 80\%$,温度为 $25 \pm 2\%$,光照 $12h \cdot d^{-1}$,光照强度为 $2000 \sim 2400 Lx$ 。

2 结果与分析

2.1 叶片愈伤组织的诱导

培养 7d 时,在有些幼叶外植体的切口、周缘及表面形成了愈伤组织,培养 20d 时,叶片愈伤组织的诱导结果见表 1。

由表 1 可知, 叶片愈伤组织的诱导率受 6 - BA

和 NAA 浓度的影响。在无植物生长调节剂的 MS 培养基中,仅有 1 个外植体产生愈伤组织。当 6 - BA 浓度为 0.2 ~ 0.5 mg/L 时,愈伤组织的诱导率随着 NAA 浓度的增加而提高,当 6 - BA 浓度为 1.0 mg/L 时,无论 NAA 的浓度如何,愈伤组织的诱导率均达到 100%。愈伤组织的生长状态仅在 6 - BA 浓度偏低时(0.2 mg/L)较好,尤其 NAA 浓度中等时(1.0 mg/L)最为适合,愈伤组织质地较为致密,嫩绿色(附图 - 1)。培养基中无 6 - BA 时,外植体形成愈伤组织少,而且质地疏松。当 6 - BA 浓度高于0.2 mg/L 时外植体形成的愈伤组织疏松,色黄(附图 - 2)。

表 1 不同浓度的 6 - BA 和 NAA 对愈伤组织诱导的影响

激素浓度		接种	产生愈伤	诱导率	
6 – BA	NAA	外植体数	组织块数	(%)	
0	0	30	1	3.3	
0.2	0.5	30	8	26.7	
0.2	1.0	30	28	93.3	
0.2	1.5	30	30	100	
0.5	0.5	30	25	83.3	
0.5	1.0	30	26	86.7	
0.5	1.5	30	30	100	
1.0	0.5	30	30	100	
1.0	1.0	30	30	100	
1.0	1.5	30	30	100	

2.2 芽的分化

培养 5d 左右,愈伤组织开始增殖。10d 左右在一些愈伤组织表面产生许多淡绿色突起,进而分化成不定芽。培养 15d 时,调查愈伤组织分化成芽的情况见表 2。

由表 2 可以看出,不同 6 - BA 和 NAA 浓度组合对芽的分化有明显的影响。培养 15d 时,在不添加任何植物生长调节剂的培养基中没有芽的分化。在有芽分化的培养基中,再生芽均正常生长。在含有相同浓度 6 - BA 的培养基中,随着 NAA 浓度的增加,芽的分化率逐渐降低,平均再生芽数也是减少的,这说明,过高浓度的 NAA 对芽的分化有抑制作用(附图 -4)。当 6 - BA 浓度为 1.0 mg/L、NAA 为 0.5 mg/L 时对芽分化有利(附图 -3),此时的再生芽叶色浓绿,平均再生芽数也最高,芽的分化率达82.9%,而其它组合中芽的分化率均较低。

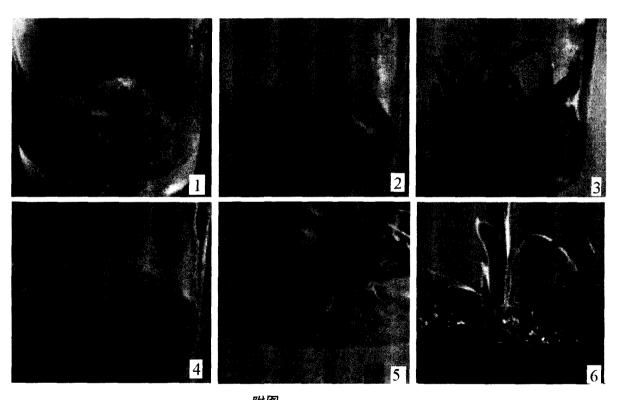
1.0

1.5

35

水 2 不同水及 NAA, 0 DA N 版 [[出 5 本 7] に 日 が 時									
激素浓度		转 人愈伤	有芽分化的	芽分化率	平均	叶色	再生芽的		
6 – BA	NAA	组织块数	愈伤组织块数	(%)	再生芽数		生长状况		
0	0	35	0	0	0				
0.2	0.5	35	19	54.3	1.5	绿	正常		
0.2	1.0	35	13	37.1	1.4	绿	正常		
0.2	1.5	35	6	17.1	1,2	绿	正常		
0.5	0.5	35	16	45.7	1.7	绿	正常		
0.5	1.0	35	12	34.3	1.5	绿	正常		
0.5	1.5	35	4	11.4	1.5	绿	正常		
1.0	. 0.5	35	29	82.9	3.1	浓绿	正常		
1.0	1.0	35	17	48.6	2.5	浓绿	正常		

25.7


2.3

浓绿

正常

9

表 2 不同浓度 NAA,6-BA 对愈伤组织芽分化的影响

附图

1. MS+6~BA(0.2mg/L)+ NAA(1.0mg/L)上的愈伤组织; 2. MS+6-BA(1.0mg/L)+ NAA(1.0mg/L)上的愈伤组织; 3. MS+6-BA(1.0mg/L)+NAA(0.5mg/L)上的不定芽; 4. MS+6-BA(1.0mg/L)+NAA(1.5mg/L)上的不定芽; 5. MS+NAA(0.1mg/L)上的生根培养; 6. 组培苗的驯化移栽

2.3 菊苣生根培养和驯化移栽

将高 2~3cm 的小苗接种在①MS, ②MS + NAA (0.1 mg/L), ③MS + NAA (0.5 mg/L), ④MS + NAA(1.0 mg/L)的生根培养基上进行培养,结果见表3。

由表3可以看出,经过一段时间培养后,接种

在培养基①的芽苗没有生根,说明在没有任何激素的 MS 培养基中小苗是不能生根的。接种在②中的小苗产生较多粗短健壮的根(附图 - 5),而接种在培养基③和④上的芽苗仅有少量根的产生,而且所产生的根纤弱细长。将生根良好的小苗植入装有蛭石和河沙(1:1)的营养钵中在室内阳面经过2

周炼苗(附图-6)后,移栽入大田中,成活率在60%以上。

表 3 不同浓度的 NAA 对生根率的影响

培养基	外植 体数	生根外 植体数	生根 总数	生根率 (%)	毎 株 生根数	生根 状态
MS	24	0	0	0	0	·
MS + NAA(0.1 mg/L)	24	24	278	100	11.6	粗短
MS + NAA(0.5 mg/L)	24	13	85	54.2	6.5	细小
MS + NAA(1.0mg/L)	24	11	62	45.8	5.6	细小

3 讨 论

- 1) 在愈伤组织的诱导试验中,发现不同浓度的 6-BA 与 NAA 组合都能够诱导出愈伤组织,但是高浓度的 6-BA 与 NAA 组合诱导得到的愈伤组织都呈黄色松散结构,这种愈伤组织很难分化成苗,只有较低浓度的 6-BA 与中等浓度的 NAA 组合诱导得到的愈伤组织结构紧密,中央呈浅绿色,愈伤组织在其后的分化培养中易保持良好的结构。
 - 2) 生根培养中,在没有 NAA 的 MS 培养基上,

小苗是无法生根的。但是 NAA 浓度过高也不利于生根。有报道说降低培养基中无机盐的含量有利于生根,是不是对菊苣也适用有待于进一步研究。

参考文献:

- [1] 李建伟,长问路. 二十一世纪保健蔬菜 菊苣的栽培技术[J]. 北京农业,2000,(4):11-12.
- [2] Rehman, Fazli, rivastava. Plant regeneration from the leaf explants of chicory cichorium intybus. Proceedings of the National Seminar on the Frontiers of Research and Development in Medicinal Plants, Lucknow, India, Septermber, 2000, 16-18.
- [3] 孙学忠,等. 菊苣的栽培技术[J]. 中国野生植物,1989,(3):29-30.
- [4] 侯京存,霍京荣. 菊苣栽培季节和技术要点[J]. 蔬菜,2000, (10):12-13.
- [5] 黄浩平. 菊苣的栽培技术利用[J]. 适用技术市场,2000,(10): 32.
- [6] 张文路. 菊苣栽培技术[J]. 天津农业科学,1999,5(4):17-
- [7] 王绍明,张霞. 菊苣花瓣的组织培养[J]. 植物生理学通讯, 2001,37(3);231.

(上接30页)

期根长、干重在 0~210kg/hm² 施氮范围内随着施氮量的增加而增加,而过多的施氮处理(315kg/hm²) 根长、干重反而降低,表明施氮量过多并不利于中后期根长的伸长和干物质的积累,只有适量增加施氮量才可促进根的伸长干物质的积累。从施氮量对北沙参根冠比的影响可以看出,适量施用氮肥可以提高北沙参的根冠比,使地上部和地下部生长协调,提高产量,过量施用氮肥根冠比降低,地上部生长过旺,导致沙参根生长不良,沙参根产量下降。因此,在北沙参生产中应合理施用氮肥,公顷施用氮肥210kg 左右为宜。

参考文献:

- [1] 屠鵬飞. 南沙参多糖理化特性的研究[J]. 中草药,1992,23 (9):482-487.
- [2] 张永清. 山东省北沙参生产情况调查[J]. 山东中医杂志, 2001,20(3);169-171.
- [3] 谭翠英,王铭伦,田明宝,等. 北沙参资源分布与形态特征的研究[J]. 莱阳农学院学报,1997,14(3):179-180.
- [4] 原忠,周碧野,等. 北沙参的苷类成分[J]. 沈阳药科大学学报, 2002,19(3):183-185.
- [5] 谭允育,康娟娟,王娟娟,等. 沙参对正常小鼠免疫功能影响的 实验研究[J]. 北京中医药大学学报,1999,22(6):39-41.
- [6] 谭翠英,王铭伦,等. 不同肥料配比对莱阳沙参产量和参根生长 影响的研究[J]. 莱阳农学院学报, 1997,14(2):105-108.