红色马蹄莲组织培养技术研究

孙新政,李庆伟 (河南农业职业学院,河南 中牟 451450)

摘要:以红色马蹄莲块茎为外植体,研究不同的消毒时间、激素种类和浓度对其组织培养的影响,结果表明:对红色马蹄莲块茎消毒以75%酒精浸泡 $30\,\mathrm{s}$ 后用0.1%升汞浸泡 $11\sim13\,\mathrm{min}$ 为宜; $1/2\,\mathrm{MS}+6-\mathrm{BA}1.2\,\mathrm{mg/L}$ 可以作为红色马蹄莲块茎芽诱导的适宜培养基;在 $1/2\,\mathrm{MS}+6-\mathrm{BA}1.5\,\mathrm{mg/L}+\mathrm{IBA}0.1\,\mathrm{mg/L}$ 培养基中,丛生芽增殖系数可达3.60;适宜生根培养基为 $1/2\,\mathrm{MS}+\mathrm{IBA}0.3\,\mathrm{mg/L}$ 。

关键词:红色马蹄莲;消毒;增殖系数;生根培养

中图分类号: S682.2+64

文献标识码: A

文章编号: 1004 - 3268(2007)10 - 0090 - 03

彩色马蹄莲(Z. rehmannii)属天南星科马蹄莲属球根花卉,花型为肉穗花序,花色有红、黄、粉红、桔红、橙黄或红黄色等,由于其色彩艳丽,形态高雅,近年来已成为世界性新兴而富有发展潜力的球根花卉品种。彩色马蹄莲常规繁殖方法采用块茎分生法进行,繁殖系数低,且种球易感染病害,严重影响了其产业化的发展。通过植物组织培养不仅可以提高繁殖系数,还能使种球健壮。目前有关彩色马蹄莲组织培养方面的研究已有一些报道[1~6],对部分品种彩色马蹄莲的组织培养的某些环节进行了研究,不同品种培养在外源激素浓度及配比上均有差异。本研究以红色马蹄莲为材料,探索外植体最佳消毒时间及芽诱导、增殖及生根培养基配方,为建立其快繁体系及规模化生产奠定基础。

1 材料和方法

1.1 材料

试验材料为红色马蹄莲品种,引自河南四季春园林艺术工程有限公司。

1.2 方法

将红色马蹄莲块茎用洗洁精液浸洗 15 min,剥去表面的老皮层,露出新鲜新皮层,用流水冲洗 30 min 后置于超净工作台上,用体积分数为 75%的酒精浸泡 30 s,无菌水冲洗 1 次,再用质量分数 0.1%的升汞浸泡 3,5,7,9,11,13,15,17 min,无菌水冲洗 4 次,取出置于无菌纸上,切成含有 1~2 个芽眼的小块接种于 MS 培养基中,每处理接种 20 瓶。在初代培养20d后,转接到芽诱导培养基上,

收稿日期:2007-05-09

作者简介:孙新政(1961-),男,河南开封人,副教授,主要从事园艺园林植物繁育的研究与教学工作。

^^^^^

效高,持效期长,而且为局部施药,对环境污染小,是较理想的防治草履蚧大龄若虫的药剂。建议在生产上轮换使用,以避免抗药性的产生。

草履蚧的大龄若虫体背面已覆盖较厚的蜡质物,触杀剂不好发挥其作用。因此,在这个时期只能选用内吸性杀虫剂防治。由于草履蚧的大龄若虫对药物抵抗力较强,故用药量较大,会造成不必要的浪费,所以提倡在草履蚧上树前进行积极主动的防治,努力做好草履蚧若虫孵化盛期的测报工作,尽量不要错过初孵若虫上树前防治的有利时机。

参考文献:

[1] 王子清. 中国农区的介壳虫[M]. 北京:农业出版社,

1982:35-45.

- [2] 杨平澜. 中国介壳虫分类概况[M]. 上海: 上海科技出版社,1982;23-31.
- [3] 林焕章,张能唐. 花卉病虫害防治手册[M]. 北京:中国农业出版社,1998:22-27.
- [4] 高存劳,王小纪,张军灵,等. 草履蚧的生物学特性与发生规律研究 [J]. 西北农林科技大学学报(自然科学版),2002,30(6):78-80.
- [5] 吕淑杰,王小纪,谢寿安,等. 草履蚧测报技术[J]. 东北 林业大学学报,2002,30(3):40-42.

对萌发生长的芽,分剪成独立的单个芽,接种到芽增殖培养基中,将产生的丛生芽,切分成单芽接种于生根培养基中。

其中, 芽诱导培养分别采用 MS 培养基和 1/2MS培养基添加不同浓度的 6-BA; 芽增殖培养以 1/2MS 为基本培养基, 添加不同浓度的 6-BA 和 IBA, NAA, 每处理接种 15 个外植体; 生根培养分别采用 MS 培养基和 1/2MS 培养基添加不同浓度的 NAA 和 IBA, 每处理接种 15 个外值体。

初代培养每瓶接种 1 个外植体,以后培养每瓶接种 3 个芽,重复 5 次。培养基中蔗糖 3%、琼脂 0.7%,pH 值为 5.8,培养环境为温度 $23\sim27\%$ 、光 强 $2000\sim2500$ lx、光照 $10\sim12$ h/d。

2 结果与分析

2.1 不同消毒时间对红色马蹄莲块茎芽诱导的 影响

接种 2 d 后观察,用升汞消毒 3,5,7,9,11 min 的外植体与培养基接触部位出现细菌,3 d 时菌膜增加明显,4 d 时在消毒 1 min 块茎上萌生白色真菌菌丝,7 d 时在消毒 3,5,7 min 的外植体大量出现霉层,20 d 时在消毒 15,17 min 的块茎外植体表面部分被消毒剂杀死,形成明显的组织杀死症状。从表1 可以看出,虽然消毒时间 13,15,17 min 的污染率为0,其他消毒时间处理具有不同程度的污染,但用升汞消毒 11 min 的污染率只有 5%,外植体的芽体并没有受到损伤,13 min 处理只有少许芽被杀死,可以确定用 0.1%的升汞对红色马蹄莲块茎消毒效果以 11~13 min 为好。

表 1 不同消毒时间对红色马蹄莲块茎芽诱导的影响

消毒时间 (min)	污染瓶数	污染率 (%)	外植体状况
3	20	100	表面出现霉层
5	14	70	表面出现霉层,与培养基接触部 分出现细菌污染
7	10	50	发生多为细菌污染,少真菌污染
9	6	30	都是细菌污染
11	1	5	1 瓶细菌污染,芽体开始萌发
13	0	0	有少许芽被杀死
15	0	0	外植体表面芽杀死,材料内部没有死
17	0	0	外植体被杀死

2.2 不同基本培养基和 6-BA 对红色马蹄莲块茎 芽诱导的影响

从表 2 可以看出,不同培养基和 6-BA 对红色 马蹄莲块茎诱导效果不同,在 MS 培养基和1/2MS 培养基中均以添加 6-BA 1. 2 mg/L 诱导率最高;在基本培养基相同的情况下,随着 6-BA 浓度的相对增加,芽的诱导率明显增加,但在较高浓度6-BA 1.5 mg/L 时芽的诱导效果反不如 1. 2 mg/L 高,且明显存在芽体质量下降;1/2 MS 培养基与 MS 培养基相比,只是无机盐浓度的降低,6-BA 浓度较低时,芽诱导率及芽体质量没有明显差异,但在高浓度6-BA 1.5 mg/L 时,则明显高于 MS 培养基。在试验中观察发现,诱导出的芽有的并不是从块茎的芽眼中萌发出来,其萌发部位没有明显芽眼痕迹。从芽眼中诱导萌发的芽在6-BA 浓度较高时1.2 mg/L或 1.5 mg/L 可以形成丛生芽。综合分析认为:1/2 MS+6-BA 1.2 mg/L 可以作为红色马蹄莲块茎芽诱导的适宜培养基。

表 2 不同基本培养基和 6-BA 对红色马蹄莲 块茎芽诱导的影响

编号	6-BA 浓度 (mg/L)	外植体的芽数 (个)	芽诱导个数 (个)	芽诱导率 (%)
A1	0	30	20	66.7
A 2	0.3	26	38	146.2
A 3	0.6	30	5 6	186.7
A 4	0.9	29	6 5	224.1
A 5	1, 2	23	67	291.3
$\mathbf{A}6$	1.5	30	62	206, 7
A 7	0	2 5	15	60
A 8	0.3	30	30	100
A 9	0.6	30	52	173.3
A10	0.9	30	67	223.3
A11	1.2	27	79	292.6
A12	1.5	30	72	240

注:A1-A6 基本培养基为 MS,A7-A12 基本培养基为 1/2MS 2.3 不同激素组合对红色马蹄莲芽增殖的影响

从表 3 可以看出,在 6-BA 浓度不变的情况下,随着 NAA 和 IBA 浓度的提高,芽增殖系数减小,在低浓度生长素条件下,丛生芽诱导效果和质量明显比单一添加细胞分裂素效果要好;在高浓度生长素条件下,在芽基部产生根的分化,如 B3,B6,B12,B18。B13 为适宜芽增殖的培养基,即 1/2MS+6-BA 1.5 mg/L+IBA 0.1 mg/L,增殖系数为3.60。

2.4 不同基本培养基和激素对红色马蹄莲芽生根的 影响

从表 4 可以看出,激素浓度过高易形成愈伤组织而影响根的分化,而低浓度时随着浓度的相对升高根的生长速度加快。在 MS 培养基中 IBA 0.5 mg/L时会产生少量的愈伤分化,但在 1/2MS 中比 MS 中愈伤组织分化明显且分化速度快, NAA 在浓度

0.3 mg/L以上时就会产生愈伤分化,且随着浓度的增加能形成明显的愈伤组织,1/2MS产生的愈伤组织更为明显。以培养基1/2MS+IBA0.3 mg/L诱导根数量多、生长速度快,适宜作为红色马蹄莲芽生根培养基。

表 3 不同激素组合对红色马蹄莲芽增殖的影响

编号	激素浓度(mg/L)			芽增殖数量	100 T# 25 #4.
	6-BA	IBA	NAA	(个)	增殖系数
B1	0. 9	0. 1		28	1.87
B2	0.9	0.2		24	1.60
В3	0.9	0.3		19	1. 27
В4	0.9		0.1	25	1.67
B 5	0.9		0.2	20	1.33
В6	0.9		0.3	17	1.13
B7	1.2	0.1		32	2. 13
B8	1. 2	0.2		28	1.87
В9	1. 2	0.3		19	1.27
B10	1. 2		0.1	31	2.07
B11	1.2		0.2	26	1.73
B12	1. 2		0.3	20	1.33
B13	1.5	0.1		54	3.60
B14	1.5	0.2		48	3. 20
B15	1.5	0.3		42	2.80
B16	1.5		0.1	48	3.20
B17	1.5		0.2	43	2.87
B18	1.5		0.3	38	2.53

表 4 不同基本培养基和激素对红色马蹄莲芽生根的影响

编号	激素浓度 (mg/L)	生根率 (%)	生根数(条)	生根状况
C1		6. 7	0.07	只有一条根产生
C2	IBA 0.1	80.0	0.8	个别有根产生
C3	IBA 0.3	100.0	4.6	都有根的产生,根数量多
C4	IBA 0.5	100.0	3.6	芽基部有愈伤分化
C5	NAA 0, 1	100.0	3.1	根系生长良好
C6	NAA0. 3	100.0	2. 3	芽基部产生愈伤分化
C7	NAA0. 5	100.0	1.7	根颈处有愈伤组织产生
C8		73.3	0.73	多数有根产生
C9	IBA 0.1	100.0	3.5	都有根的产生
C10	IBA 0.3	100.0	5.7	根数量多,生长迅速
C11	IBA 0.5	100.0	3.0	有愈伤分化产生
C12	NAA 0.1	100.0	3.4	根生长好,少有愈伤分化
C13	NAA 0.3	100.0	2.1	分化产生愈伤组织
C14	NAA 0.5	100.0	1. 2	有愈伤组织形成

注:C1-C7 基本培养基为 MS,C8-C14 基本培养基为 1/2MS

3 结论与讨论

在植物组织培养中,基因型、生理状态不同的植物材料,对外源激素的感应也不尽相同。在影响彩色马蹄莲芽诱导的因素中,不同的激素浓度和配比方式也影响着其诱导率和增殖系数。王进忠等[4]以粉色马蹄莲为材料,研究 NAA 和 6—BA 不同的配比对丛

牛芽诱导时指出,MS+NAA0.2mg/L+6-BA1~ 3 mg/L 有利于丛生芽的诱导; 吴丽芳等[5] 指出, MS+ NAA0.1 mg/L+6-BA1~2 mg/L有利于芽的诱导, 而高浓度的 6-BA 易于诱导愈伤组织。而彭峰等[1] 以彩色马蹄莲 Parfait 研究芽的诱导指出,B5+6-BA 3 mg/L效果好;在本试验中发现,以 MS 培养基为基 本培养基,并不是特别适宜诱导红色马蹄莲的芽诱 导,适当降低基本培养基中的无机盐浓度有利干芽的 诱导,和前人研究结果并不一致。不同的 NAA, IBA 和 6-BA 配比对芽的诱导结果不同,培养基 1/2MS $+6-BA1.5 \, mg/L + IBA0.1 \, mg/L$ 芽的增殖系数高, 效果好,6-BA 同 NAA 结合并不能产生像前人研究所 出现的研究结果。李国义等[6] 指出, MS+NAA 0.5 mg/L+IBA-Na0.2mg/L适宜红色和黄色马蹄莲 的生根诱导; 吴丽芳等[5] 用 MS+IAA0. 2 mg/L+ NAA 0.3 mg/L诱导根的诱导率可达 96%; 笔者 直 接在1/2MS中分别添加不同浓度的 IBA 和 NAA, 发现单一激素就能取得较好的诱导效果,平均生根 数最高可达 5.7条。钱丽华等[3] 筛选出了根芽同步 分化的激素浓度组合(6-BA1 mg/L+NAA0.1mg/L),可以缩短组织培养的周期,但芽增殖率和生 根率均较低。

本试验结果表明,红色马蹄莲的组织培养以块茎为外植体,消毒方法以 75%酒精浸泡 30 s 后用 0.1%升汞浸泡 11~13 min 为宜;芽诱导以 1/2MS+6-BA1.2 mg/L为适宜培养基;丛生芽在1/2MS+6-BA1.5 mg/L+IBA0.1 mg/L培养基中,增殖系数最高,可达 3.60。根诱导在 1/2MS 培养中添加单一激素 IBA 0.3 mg/L 即能取得理想效果,生根率达 100.0%,平均生根达 5.7条。

参考文献:

- [1] 彭峰,陈嫣嫣,郝日明,等.彩色马蹄莲Parfait不定芽诱导增殖培养条件的优化和筛选[J].植物资源与环境学报,2006,15(2):47-49.
- [2] 钱丽华,沈国正,戴丹丽,等.彩色马蹄莲的离体繁殖试验[J].浙江农业科学,2005(2):112-113.
- [3] 钱丽华,孙坚红.彩色马蹄莲的组培快繁技术初探[J]. 杭州农业科技,2004(1);7-8.
- [4] 王进忠,高文,高遐虹,等. 粉色马蹄莲组织培养研究 [J]. 北京农学院学报,2005,20(2):10-13.
- [5] 吴丽芳,熊丽,屈云慧,等.彩色马蹄莲组培研究[J].西南农业大学学报,1999,21(5);423-246.
- [6] 李国义,龚束芳,张丽梅,等.彩色马蹄莲组培快繁技术的研究[J].北方园艺,2004(2):64-66.