"洛阳红"牡丹组织培养快速繁殖技术研究

王燕霞,师校欣,杜国强,王晨,郝哓祎,王俊玲(河北农业大学园艺学院,河北保定071001)

摘要:以"洛阳红"牡丹组培苗为试材,探讨了不同基本培养基、激素配比、培养条件、抗褐化物质对"洛阳红"牡丹继代苗增殖生长、生根及褐化的影响。结果表明:DKW基本培养基适宜"洛阳红"牡丹继代增殖;培养基中附加2.0~3.0mg/LBA与0.5mg/LIAA或0.05mg/LNAA配比有利于继代苗分化、生长,而附加五米素ZT效果不佳;20~25℃对"洛阳红"继代苗增殖影响不大,30℃下试管苗很快老化、枯死,不宜采用;1/2MS附加0.2mg/LNAA或2.0mg/LIAA与2.0mg/LIBA配比可促进"洛阳红"牡丹试管苗不定根诱导;继代和生根培养基中附加0.5g/LPVP可有效减轻'洛阳红'牡丹组培苗褐变,促进继代苗分化、生长,但对生根没有明显影响。

关键词:牡丹;组织培养;继代增殖;生根;褐变

中图分类号:S682.1 文献标识码:A

Micropropagation of 'Luo Yang Hong' Peony in vitro

Wang Yanxia, Shi Xiaoxin, Du Guoqiang, Wang Chen, Hao Xiaoyi, Wang Junling (College of Horticulture, Agricultural University of Hebei, Baoding 071001)

Abstract: The 'Luo Yang Hong' peony cultured in vitro was studied for effect of basic media, combination of plant growth regulators, incubation condition, and anti-browning material on subculture status, rooting ability, and browning. The results showed that DKW medium was a suitable basic medium for 'Luo Yang Hong' Peony's subculture. Supplying of 2.0~3.0mg/L BA and 0.5mg/L IAA or 0.05mg/L NAA could benefit the subculture, but supplying of ZT did not have positive result. The plantlets incubated at 20~25°C had no significant difference in terms of the number of propagating buds, but the plantlets were aging and dead faster at 30°C. The 1/2MS basic medium supplied with 2.0mg/L NAA or 0.2mg/L IAA and 2.0mg/L IBA could help the inducing of adventitious roots. The supplying of 0.5g/L PVP in media of subculture and rooting could mitigate browning and promote differentiation of subculture plantlets, but had no significant effect on rooting.

Key words: peony, tissue culture, subculture, rooting, browning

牡丹(Paeonia suffruticosa)属芍药科芍药属宿根木本花卉,花朵雍容华贵,端庄富丽,居中国传统名花之首,素有"花中之王"、"国色天香"之美誉。中国人民还把牡丹作为幸福、美好、繁荣昌盛的象征,深受人们喜爱。牡丹不仅有极高的观赏价值,还有相当重要的药用价值[12]。牡丹传统的繁殖方式有种子繁殖、分株繁殖、压条繁殖和嫁接繁殖[34]等。但在实际生产中存在一些

问题,如种子具有休眠习性,有些品种在自然状态下萌发需要8个月的时间且生根萌发率极低^[3],一些名贵品种经长期人工栽培,结实能力降低,种子发育不良^[6]。嫁接和分株等常规无性繁殖方式不仅成苗周期长,出苗量少,质量参差不齐,且只能在生长季节繁殖,繁殖速度有限,难以满足生产的需求。采用组织培养法繁殖牡丹,是提高牡丹繁殖率的有效途径。

基金项目:河北省自然科学基金资助项目"不同继代次数组培苗种质保存特性研究"(C2008000287)资助。

第一作者简介:王燕霞,女,1982年4月出生,硕士研究生,主要从事园艺生物技术研究。通信地址:071001河北省保定市河北农业大学园艺学院,Tel:0312-7528322,E-mail:biotech@hebau.edu.cn。

通讯作者: 杜国强, 男, 1966年2月出生, 博士, 教授, 主要从事园艺植物生物技术和果树栽培生理研究。通信地址: 071001河北省保定市河北农业大学园艺学院, Tel: 0312-7521817, E-mail: duguoqiang666@yahoo.com.cn。

收稿日期:2008-08-15,修回日期:2008-08-19。

国内、外学者对牡丹离体培养进行了研究^[7,8],但至今未能用于生产实践,原因是牡丹组培快繁难度较大,主要表现在(1)褐化严重,牡丹组培苗褐化严重,影响外植体与继代植株的正常生长与分化增殖及生根^[9];(2)生根率不高,甚至一些品种尚未获得生根苗^[10];(3)生根质量不高,不定根从茎基部的愈伤组织产生,使根与茎中间形成离层,影响下一步的移栽工作,牡丹生根苗移栽后的成活率极低,限制了组培技术在实际工作中的应用^[11]。笔者对"洛阳红"牡丹的离体快繁技术进行研究,以期为牡丹种苗的工厂化生产提供科学依据。

1 材料与方法

1.1 供试材料

2005年10月25日自河南洛阳采集"洛阳红"牡丹土芽,自来水冲冼干净,在超净台上用0.1% HgCl₂消毒5~15min,无菌水冲冼4~5次,接种在培养基(MS+BA1.0mg/L+NAA0.05mg/L+白糖30.0g/L+琼脂6.0g/L)上培养,待长成有一定数量的无菌繁殖系后进行试验,试验于2006—2008年在河北农大园艺学院生物技术实验室进行。

1.2 试验设计及方法

1.2.1 基本培养基对"洛阳红"牡丹继代增殖的影响 采用 6 种基本培养基 MS、1/2MS、WPM、C₁₇、DKW、B5,附加 BA1.5mg/L、NAA0.05mg/L、白糖 30g/L、琼脂 6g/L,pH 调至 6.0,接种"洛阳红"牡丹继代苗,完全随机试验设计,每处理 10 瓶,每瓶接种 5~6 株,要求苗大小相近(下同)。1.2.2 生长调节剂配比对"洛阳红"牡丹继代增殖的影响 基本培养基 DKW 分别附加 30g/L 白糖、6g/L 琼脂及不同浓度的 BA、ZT、IAA、NAA 组合,接种"洛阳红"牡丹继代苗,具体处理见表 2。

1.2.3 培养条件对"洛阳红"牡丹继代增殖的影响"洛阳红"牡丹继代苗接种后分别放置在 20℃、25℃、30℃ 恒温培养箱及(25±3)℃培养室下培养,调查其分化、

生长情况。

1.2.4 生长调节剂配比对"洛阳红"牡丹生根的影响 选择 1/2MS 或 1/2DKW 附加白糖 25g/L 为基本培养基,分别配合不同种类和浓度的生长素,切取继代培养35d 左右,生长健壮、株高在 1.5cm 以上的嫩梢,接入各处理培养基中,进行"洛阳红"牡丹试管苗不定根诱导(具体处理详见图 1),完全随机试验设计,每处理 10瓶,每瓶接种 4~6 株。

1.2.5 控制褐化对"洛阳红"牡丹继代繁殖和生根的影响 在 DKW+BA2.0mg/L+IAA0.5mg/L+ 白糖 30g/L 的继代培养基及 1/2MS+NAA0.2mg/L+IBA1.0mg/L+ 白糖 25g/L 的生根培养基中分别附加 0.3、0.5、1.0g/L 的聚乙烯吡咯烷酮(PVP)和 2.0、4.0g/L 的活性炭(AC),调查吸附剂 PVP 和 AC 对"洛阳红"牡丹试管苗控制褐变的效果及对继代增殖和生根的影响。

1.3 培养条件

除特殊处理外,培养室条件为温度 (25±3)℃,14h/d 光照,光照强度 2000lux。

1.4 结果调查与统计

接种后 40~50d 左右调查各处理继代苗增殖情况 或生根情况,即平均每株分化苗数和平均每株有效新 梢数(有效新梢数为高于 1.5cm、可用于生根的嫩梢 数)、生根率和平均每株生根条数。数据采用 DPS 软件 统计分析,百分率经反正弦转换,显著水平 0.05。

2 结果与分析

2.1 不同基本培养基对"洛阳红"牡丹继代繁殖的影响

将"洛阳红"牡丹继代苗接种在附加相同激素的 6 种基本培养基中培养,继代增殖的效果不同(表 1),其中以 DKW、WPM、1/2MS 基本培养基上生长的继代苗分化苗数较高,但能用于生根的有效苗数则以 DKW培养基最高,且生长势较健壮,综合考虑 DKW 基本培养基较适宜"洛阳红"牡丹继代增殖。

表 1 不同]基本培养基对'	'洛阳红"牡丹	·组培苗继代生士	そ的影响
--------	----------	---------	----------	------

基本培养基	激素浓度/(mg · L ⁻¹)		分化苗数/(个・株 ⁻¹)	去处井米 / / A #-1\	
	BA NAA		万化田蚁/(一)	有效苗数/(个・株1)	
DKW	1. 5	0. 05	3. 26 a	1.87 a	
WPM	1. 5	0. 05	3.18 a	1.12 b	
1/2MS	1.5	0. 05	2.80 ab	0.64 c	
C ₁₇	1. 5	0.05	2.08 b	0.78 bc	
MS	1, 5	0. 05	1.88 bc	0.98 b	
B ₅	1.5	0. 05	1.72 c	0.54 с	

注:表中同列数值后标记不同字母表示差异达 0.05 显著水平,相同字母表示差异不显著。以下各表相同。

2.2 生长调节剂配比对"洛阳红"牡丹继代增殖的影响 以 DKW 为基本培养基,在 16 种不同激素配比水

平下对"洛阳红"牡丹组培苗继代增殖培养。结果如表 2 所示。细胞分裂素 ZT 不适合"洛阳红"牡丹继代增

激素配比/(mg • L ⁻¹)				分化苗数/(个・株 ⁻)	有效苗数/(个•株⁻¹)
BA	ZT	IAA	NAA -	万九山奴/(1) 林 /	1324327 (1 7/1 7
1.0		0. 5	-	2.69 b	1.38 be
2.0	-,	0.5	-	2.90 ab	2.38 a
3.0	-	0. 5	-	3.67 a	1.88 ab
4.0	- "	0. 5	—	2.24 bc	1.10 c
5.0	-	0.5	_	0.93 d	0.70 d
2.0	_	-	0.05	2.93 ab	2.02 ab
3.0	- "	-	0.05	3.82 a	1.59 b
4.0	_	-	0.05	1.00 d	0.69 d
-	1.0	0.5		1.00 d	0.53 de
· -	2. 0	0. 5	_	0.84 d	0.42 e
_	3.0	0.5	-	1.11 d	0.88 cd
, ~	4.0	0.5	-	1.00 d	0.30 e
1.0	1.0	0.5		2.27 bc	1.09 c
2.0	1.0	0. 5	_	2.53 b	1.33 bc
1.0	2.0	0. 5	-	1.96 c	1.06 c
2.0	2. 0	0. 5	_	1.85 c	1.03 c

表 2 不同激素浓度配比对"洛阳红"牡丹继代增殖的影响

殖,无论 ZT 单用还是与 BA 组合,对"洛阳红"继代增殖的效果都不好,生长势不整齐,试管苗老化;BA 浓度高于 4.0mg/L 分化苗数少,且过早停长,不利于"洛阳红"牡丹的繁殖,附加 2.0~3.0mg/L BA 时,"洛阳红"牡丹分化苗数和有效苗数都较高,增殖效果好;生长素种类对"洛阳红"牡丹继代增殖的影响不大,IAA0.5mg/L 或NAA0.05mg/L 处理没有明显差别。

2.3 培养温度对"洛阳红"牡丹继代繁殖的影响

将"洛阳红"牡丹继代苗接种后分别置于 20℃、25℃、30℃恒温箱及 (25±3)℃培养室条件下培养,结果表明 20~25℃温度下,恒温或小幅变温处理分化苗数、有效苗数差异均不显著(表 3),但 30℃条件下试管苗生长后期易褐化、枯死,不宜采用。

表 3 培养温度对"洛阳红"牡丹继代增殖的影响

温度/℃	分化苗数/(个·株·1)	有效苗数/(个•株1)
20	2.92 a	1.85 a
25	3.54 a	1.93 a
30	1.36 b	0.25 b
25±3	3.68 a	2.01 a

2.4 生长素配比对"洛阳红"牡丹试管苗不定根诱导的 影响

在附加不同生长素配比的 1/2DKW 培养基中接种牡丹生根苗,结果表明,各处理生根率低于 10%甚至不生根,说明 1/2DKW 基本培养基不适宜做牡丹组培苗生根培养。

以 1/2MS 基本培养基附加不同浓度的 IAA 与 IBA

或 NAA 与 IBA,预备试验时发现,3 种生长素单独使用 或配合使用浓度较低时 (0.5~1.0mg/L IAA, 0.3~1.0mg/L IBA,参考多数植物生根培养所用浓度)生根率很低,加大生长素浓度后,"洛阳红"牡丹试管苗获得了较高的生根率(图 1),其中 IBA 促进生根效果明显,随浓度升高,生根率明显增加;IAA 和 NAA 也有随浓度升高,生根率提高的趋势,不过 NAA 浓度达到 0.3mg/L 时开始抑制不定根发生,IAA3.0mg/L 和 IBA2.0mg/L 配合时也有此现象发生。生长素对发根条数的影响趋势与生根率相同。综合以上结果"洛阳红"牡丹不定根诱导以 IAA2.0 或 NAA0.2 与 IBA2.0 配合使用效果较好。

2.5 控制褐化对"洛阳红"牡丹继代繁殖和生根的影响

"洛阳红"牡丹试管苗褐化严重,在 DKW+BA 2.0mg/L+IAA 0.5mg/L+ 白糖 30g/L 的继代培养基及 1/2MS+NAA 0.2mg/L+IBA 1.0mg/L+ 白糖 25g/L 的生根培养基中分别附加吸附剂 PVP 和 AC,结果表明(表4),PVP 有减轻"洛阳红"牡丹试管苗褐化的效果,且附加 0.5g/L 的 PVP 可有效促进其继代苗分化,但供试各浓度对生根未显明显促进作用;附加 2.0 和 4.0g/L 的 AC 对"洛阳红"牡丹试管苗的增殖和生根均有抑制作用。培养基中附加 PVP、AC 的原理是可吸附材料分泌的有害物质,有效防止褐变对材料的伤害,其中 PVP 是酚类物质的专一吸附剂^[9],而 AC 可能也同时吸附了促进分化的营养物质和生长激素^[12],所以抑制了材料生长。

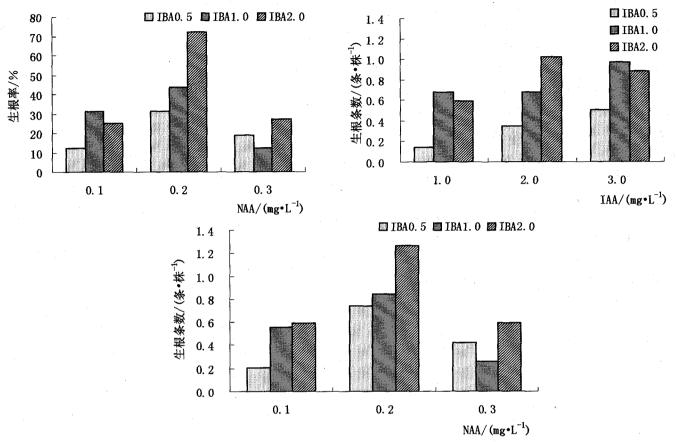


图 1 生长素配比对"洛阳红"牡丹试管苗生根的影响

表 4 PVP 与 AC 对"洛阳红"牡丹继代增殖和生根的影响

PVP/(g • L ⁻¹)	AC/(g • L ⁻¹) -			生根	
		分化苗数/(个・株-1)	有效苗数/(个・株-1)	生根率/%	生根条数/(条•株-1)
0.0	0.0	2.56 в	1.82 bc	38.6 a	0.58 a
0.3	_	2.87 b	2.35 a	32.6 a	0.49 a
0.5	_	3.62 a	2.68 a	30.0 a	0.45 a
1.0	-	2.92 b	1.32 c	15.0 b	0.25 b
· -	2.0	0.95 с	0.66 d	0.0 с	0.0 c
_	4.0	1.02 c	0.74 đ	0.0 c	0.0 с

2.6 "洛阳红"牡丹试管苗温室驯化移栽

将"洛阳红"牡丹诱导生根 40d 的生根苗,转入温 室强光照(18000~35000lux)闭瓶锻炼 2 周,开瓶锻炼 3d 后,取出试管苗移栽,移栽基质分别选用 1/2 沙壤土 +1/2 蛭石及草炭土 + 珍珠岩两种, 并用 0.1%多菌灵药 液消毒,栽后喷 0.1%多菌灵预防病害发生,搭小拱棚 保持湿度,一周后逐渐放风,直至去掉小拱棚。50d 后 调查移栽成活率,其中蛭石+河床土基质成活率为 25.7%, 草炭土+珍珠岩基质的移栽成活率为10%。

3 讨论

秋季采"洛阳红"牡丹土芽起始培养,污染率低,接 种芽很快正常分化,所以土芽适宜做为外植体。"洛阳 红"牡丹试管苗增殖、生根的效果主要受培养基基本成 分和激素配比影响,继代培养基选用 DKW 比较合适, 但生根培养用 1/2DKW 效果很差, 宜用 1/2MS 培养 基。从试验结果看"洛阳红"牡丹试管苗生根率可达 72%,但比起其它植物种类生根率还是偏低,笔者借鉴 对较难生根的苹果品种进行适当黑暗培养来提高生根 率的方法[13],对"洛阳红"牡丹生根培养苗进行 15~20d 黑暗培养,但未能提高生根率,不过试验初步发现培养 基的糖浓度和 pH 影响"洛阳红"牡丹生根,具体最适 处理还需进一步试验验证。

很多报道都认为牡丹试管苗生根质量较差,根从 苗基的愈伤组织产生,使根与茎中间形成离层,影响下 一步的移栽工作四,笔者发现"洛阳红"牡丹试管苗生 根后还存在一些其它问题,比如其它树种转入生根培 养基中后由于生长素浓度提高,试管苗明显增高,茎增粗,叶片增大;而"洛阳红"牡丹生根后的植株比继代苗生长势还弱,个体不增大,颜色暗淡,无光泽,还有茎尖枯死现象;尤其生根后期诱导的不定根由最初的白色逐渐变为绿色、褐色,很易老化,变硬、变脆,这些因素对移栽成活会有影响。因此笔者建议,为提高移栽成活率,应在试管苗发根后尽早锻炼、移栽。

4 结论

"洛阳红"牡丹外植体起始培养比较容易;其增殖、生根效率主要受培养基基本成分和激素配比影响,DKW 培养基附加 BA 2.0~3.0mg/L 与 IAA 0.5mg/L 或 NAA 0.05mg/L 配比继代增殖效果较好,增殖倍数可达 3~4 倍以上;1/2MS 基本培养基附加高水平的生长素 NAA 2.0mg/L 或 IAA 0.2mg/L 与 IBA 2.0mg/L 配合使用促进"洛阳红"牡丹试管苗不定根诱导,生根率可达70%左右;继代和生根培养基中附加 0.5g/L 的 PVP 可有效减轻"洛阳红"牡丹组培苗褐变程度,促进继代苗分化。

参考文献

- [1] 刘淑敏,王莲英.牡丹.北京:中国建筑工业出版社,1987:1-3.
- [2] 王建国.中国牡丹.北京:中国林业出版社,2001:5-8.
- [3] 曾端香,尹维伦,赵孝庆,等.牡丹繁殖技术.北京林业大学学报,

- 2000,22(3):90-95.
- [4] 高志民,王雁,王莲英,等.牡丹:芍药繁殖与育种研究现状.北京林业 大学学报.2001,23(4):75-79.
- [5] 周仁超,姚崇怀.紫斑牡丹胚培养与植株再生.亚热带筑物科学, 2001.30(3):60.
- [6] 李玉龙,吴德玉,潘淑龙,等.牡丹试管苗繁殖技术的研究.科学通报, 1984,(8):500-502.
- [7] LYDIA BOUZA, MOMIQUE JACQUES, EMILE MIGINIAC. Requirements for in vitro rooting of Paeonia suffirticosa Andr. cv. 'Mme deVatry'. Scientia Horticulturae, 1994, 58(3):223-233.
- [8] 李志军,刘志国,李红梅.牡丹组培快繁技术研究.山东农业科学, 2006,3:39-40.
- [9] 张俊琦,罗晓芳.牡丹组织培养中褐化的发生原因与防止方法的研究.沈阳农业大学学报,2006,37(5):720-72.
- [10] 张桂花,王红梅,王连祥.牡丹组织培养技术研究.山东农业科学, 2001.5:16-18.
- [11] 李艳敏,罗晓芳,牡丹离体培养与快速繁殖研究进展.西南林学院学报,2004,24(1):70-73.
- [12] 周俊辉,周加容,曾浩森,等.组织培养中的褐化现象及抗褐化研究 进展.园艺学报.2000.27(增刊):481-486.
- [13] 师校欣,杜国强,高仪,等.黑暗培养对苹果组培快繁及叶片再生的 影响.河北农业大学学报,2004,27(4):18-21.

致谢:感谢河南科技大学林学院李秀珍副教授提供"洛阳红"牡丹土芽。